SAFERIDE 2.0

A: Saferide 2.0 is an application designed for both Android and Apple smart phones. It’s basic purpose is to improve the current Saferide service provided by the ASUA. Currently, most students do not know what the Saferide is and it’s benefits because it is a service that is hard to use. The telephone lines are constantly full, the student doesn’t know who is picking them up, the driver doesn’t have an exact idea where the student is, and it is an outdated process. Since the rapid growth of smart phones and apps has happened, it is only fitting that the university doesn’t fall behind. This application would be a very proper supplement to the already existing service provided at the campus.

Saferide 2.0 integrates GPS location and Google Maps to help the driver pinpoint where the student is. The student will also know who their driver is and will given basic contact information in case it is needed. This will help both parties because it makes the process of the driver finding the student much more efficient. Because of this, the student won’t have to wait on the telephone for a long period just waiting for someone to forward them to a driver. Since the Map will show the student where the driver is, they can estimate how long it will take for them to get there.

Saferide 2.0 would be a completely free app, designed to help the students get where they need to go in safe fashion. The app would be continuously worked on, in order to continuously fix bugs and minor issues that show up. The interface would be smooth and simple yet complex
because it integrates a lot of technology ranging from the GPS locator to the information of the drivers. The application would be open to donations, as this money would be put back into the program to improve it any way possible. Tips and other monetary payments will not be included as the drivers are already paid by the University/ ASUA.

The interface of Saferide 2.0 is very clean and efficient. The front page of the app has you sign into your account which would be linked to your student id number and information. Once logged in, a top down view of a map is shown at the GPS location of the user, and they can use all of the apps functions from here. At the bottom there is a button that will request a ride, and the app will clarify whether the ride will be sent to the current location of the user or a different one. Then, once a ride is requested, the user will be put in a queue until an open ride is available. The queue system is simple and will require a minimal amount of server strength to run. The student will wait in the queue until a driver indicates that they will pick them up.

The closest drivers that have room for the student in the queue are notified, and they can drive to their location and pick them up. Once a driver is assigned to the student, the student will get a notification that their ride is on the way. The app will then estimate an approximate time via google maps technology, and the student will know when the ride is to arrive. Once the driver is nearby, the student will get another notification signaling this, and they will be able to get in the ride. The student will be able to check their Saferide 2.0 app at any time in order to check their status in the queue, the location of their driver, and other contact information of the driver should a phone call be necessary. This system is streamlined and efficient, and it can be implemented into the Saferide service easily.
Saferide 2.0’s value lies in it’s potential. Many students on campus use other taxi companies that have developed mobile apps and the free university service has been long forgotten. By revitalizing the service with a brand new app, many students will start using it once again. Taking use of this application will be beneficial because it will also not require students to memorize a phone number. When asking students and faculty if they knew what the Saferide telephone number was, 100% did not know what it was. Most of them didn’t even clearly know what the service was. This application would change that all. The telephone number would still be available to those who choose to use it, but it would not be the only way to request a ride. This application would bring great business to the ASUA because it would increase the demand for use of the Saferide service and therefore the University would allocate more funds to the program. More demand would lead to more drivers being hired for the job and more focus would be put on making the application as efficient as possible.

Saferide 2.0 takes an already helpful service and turns it into something that takes advantage of modern technology and uses it to help even more people. The application would stick to the original policies and stay true to it’s original guidelines but would increase its demand by being much more accessible to the students. The usability of the application would lead to it being a great supplement for the already existing service.

B: While Saferide 2.0 is very useful to the students and drivers, it also assists in fostering a healthy campus environment. Because there would be more students taking Saferides, there would be less need for individuals to have their cars, which would then clear the streets of the somewhat congestive amount of cars that can sometimes appear on weekends and busy
weekdays. For instance, on the day/afternoon of a football game, there are a million students driving around in order to reach their tailgates, houses, etc. With Saferide 2.0 all of those students would be able to get picked up in succession and dropped off without having to worry about their cars, or even worse, the chance of driving if they chose to drink at a pre-game festivity. Parking (another major problem on a busy U of A day) would also be cleared up, because without all of the students about in their cars, there would not be the massive congestion that occurs whenever game time comes around.

Businesses in and near the U of A campus could also benefit from the usage of Saferide 2.0. If they were to offer cheaper rates for food/services every time a student came in a Saferide, it would help profit, and help spread the app’s name around. Students frequently complain about having to walk from one side of campus to the other, and sometimes end up walking over a mile just to get a haircut, or grab some food. This would apply especially at night, because many students simply do not have time during the day to get their errands done, and many are caught walking in the dark. Our campus is known for being safe, and implementing Saferide 2.0 would only further cement this.

Students would not need to worry about getting around campus whenever there are events held at various locations. If there was a formal ball at the Marriott, or a Homecoming event at the football stadium, Saferide 2.0 would assist them in getting to their destinations without having to worry about parking and dealing with their own vehicles.

C: Saferide 2.0 is beneficial to many parties that are involved, including the students. The old system of saferide is very inefficient, and it is hard for students to use this service to its full
potential. The first step in the old service is a phone call, and this is already a barrier to many students. In this day and age, many college students stray away from making phone calls on their cellphone, ironically, and instead are using their phone to utilize many of the millions of apps on the web. In our experience at the University of Arizona, many students don’t even know the number of the Saferide service. This is unfortunate, because it is a very useful service to both the students and the campus. It is important to give the residents of such a large university an option to have a safe mode of transportation. It is for these reasons that we propose that such an app would be of great benefit to the school and the students. Saferide 2.0 would allow for any student to simply download the app and immediately be able to utilize the safe ride service. This is much more user friendly than the old system, and with this format, it is likely that many more students would use the Saferide service.

Being put on hold is a common problem with the old Saferide service. Since it is a free service, Saferide is usually full of pickup requests, so there is often a long wait before a student can get a ride. Since the current service is done via phone call, the student would have to wait on the phone until they are able to get a hold of a driver. Being put on hold for so long causes students to give up on Saferide and hang up, and then they may make their own choices to get home which can lead to problems. However, once they have the app downloaded, they would be able to place themselves in a queue for the next available ride. Then, the app will automatically notify them once their ride is on the way or even at their location. This would allow for students to quickly get in line, and then they can do other activities instead of waiting on the phone line.

Even if they finally get a hold of a driver in the current Saferide system, the student then has to leave wherever they are and describe their surroundings to be picked up. This can be a
problem late at night when students have to walk around the streets trying to decide where they are in Tucson at 2:00 AM. However, Saferide 2.0 can use Global Positioning System (GPS) technology to show the driver where the student is automatically. This would allow the student to stay inside where it is safer instead of walking around on the streets at night. This also saves the driver the time of having to wait for the student to explain where they are. This makes the service more efficient and usable for both parties involved. Then, once the driver is approaching the location, they can ping the student to let them know that they are arriving. Instead of the student having to wait outside from ten to twenty minutes for the driver, they can wait inside until they receive a push notification that the driver is approaching. They can then make their way to the car and make it to their destination.

The whole process is more streamlined and less painstaking for the students with Saferide 2.0. For example, let's say a student is studying late at night at a friend's house, and she wants to get a Saferide home. She will first open the Saferide 2.0 app and request a pickup from her location. This will place her in a 20 minute queue, so she can continue studying instead of waiting 20 minutes on hold. Then, once the driver is on his way, the app will notify her, so she can start packing up her stuff and prepare to leave. Finally, when the driver is close, the app will notify her again, and she will go outside to be picked up and taken home. This makes the process more efficient for both her and the driver. She will get home with less hassle, and he will be able to immediately take another request for a pickup. Then the process starts all over again. This shows that Saferide 2.0 is very beneficial to the consumer in the regards that it saves them time and frustration. The efficiency and ease of use will allow more students to use the service, and it will provide a more smooth process for all the students who use Saferide.
The app would be primarily a result of student effort, with students developing the actual source code and students running the organization following its release. Due to the fact that current members of ASUA’s SafeRide do not have an abundance of programming experience, and the members of SafeRide 2.0 have a similar lack of knowledge on the subject, an outside source would be contacted to ask for assistance programming the app. Consequently, SafeRide 2.0 would approach the University of Arizona’s School of Computer Science by attempting to contact faculty directors and counselors of that school. Students would then be notified of a volunteer programming opportunity by way of email and multiple in-class announcements from the faculty directors and counselors. These students could then notify SafeRide 2.0 of their interest by way of email. Their credentials would be examined by members of the organization through the submission of a resume and a minor interview follow-up. After assembling a team of 5-6 volunteer programmers, work designing the app would begin. The volunteers would be provided with their own space inside of the ASUA offices in which to program and discuss their ideas. The app would have a deadline requiring it be finished within a semester. Once completed, SafeRide 2.0 will apply for space on the Apple AppStore and the Google Play Store. SafeRide 2.0 would then begin advertising its new app by word of mouth as well as a series of flyers and posters that would be set up around the union, in addition to a campus wide email notifying students of the app.

The programmers would also need to develop a driver’s-side to the app for the SafeRide 2.0 drivers. The volunteer programmers would be required to work in the same timeline for the previous app (so that both apps are completed at the same time). This would not be difficult to do as the driver’s portion of the app would simply allow them to receive notifications that describe a
rider’s location, as well as display their own location as a car in the interactive map. This is not a major deviation from the rider’s-side portion of the app, so no major amounts of coding will be required.

Following the establishment of the software, work would begin to provide an infrastructure from which the organization operates. There would need to be funding for at least one more car, preferably two. With currently only one car, ASUA’s SafeRide is not operating efficiently. Additional vehicles would allow SafeRide 2.0 to carry more passengers at a time, thus reducing the wait-time for students who have queued for one. Drivers for these cars would be selected in a manner similar to how the aforementioned programmers were selected. Applicants would go through an interview process with a resume and driving record screening prior to the rounds of interviews. The ideal driver would be friendly, intelligent, safely able to operate a car, and have a smartphone. After three to four additional drivers had been recruited, these individuals would be provided with schedules and assigned to cars. During their shifts, they will respond to requests for rides on their phone, using the ASUA SafeRide 2.0 offices as a base of operations (these offices already exist, the name would just be changed from “SafeRide” to “SafeRide 2.0”). When receiving a call, drivers will drive to the locations designated by the rider in the app. Upon arriving, they will use their mobile device to contact the rider via text or telephone. If unable to find the rider, the driver will leave within five minutes. Upon the rider(s) entering the vehicle, they were designate a destination for the driver. Once the driver has dropped off their rider, they will continue to use their mobile device for calls. If no call occurs, they will return to the SafeRide 2.0 offices and wait until a request comes.